Geometry optimisation for the
Marchetti cams

200 A

,,,,,,,,,, ---- Path B
A \\\ —— Path C;

150 A

100 A

(O
o
1

Y-axis [mm]
|

—100 A

—150 A

—200 A
-200 -150 -100 -50 0 50 100 150 200
X-axis [mm]

By Wesley Peijnenburg

Updated 19 March 2020

Introduction

This article builds further upon two articles already published on marchetti-engine.com:

1. "Estimating historical dimensions of the Marchetti Engine - December 2016”
2. "Mathematical solution of the Marchetti cams - March 2020”

The goal of this article to provide the tools necessary to optimise the geometry of the cams. The
first interesting aspect to optimise is rotational acceleration of the wheels and to minimise it by
changing input parameters. The parameter definitions and solutions are taken from the article
"Mathematical solution of the Marchetti cams” and repeated shortly below:

7 ~N
Up position ~ / AN
Parameter Value Description
A - Rocker pivoting point
B - Wheel centre point
Cc - Contact point wheel and cam

R4 170mm Radius center to pivoting point
Rp 85mm Rocker arm length
Rc 47mm Wheel radius

Low position

Lg - Cylinder stroke
a - Angle to point A; main axis orientation
Bmaz 100° Maximum angle of rocker arm
Bmin 20° Minimum angle of rocker arm
AB - Difference Bqe and Bmin
yoo- Angle from Bj to contact point C;
Figure 1: Parameter definition
The equation of the cam geometry:
Bl
Ciz = Biz — Rcﬁ
\/ Bl:p + Bly
B,

\/ Bl + B,

Where the curves B are defined by the following equations:

Bi, = A, + Rpcos(a+m— (1)
Biy=A,+ Rp sin(a+7— ()

And their derivatives:
Bix = —R4 sin (o) — Rpsin (a + 7 — ,6’1) (1 — Af sin (2a)>

1y = Ra cos(a)+ Rpcos (a +7— 51) (1 — Af sin (2a))

With the swinging motion defined by the angle equations:

B1 = Bmin + %Aﬁ (1 —cos(2a))

2 Made by Wesley Peijnenburg marchetti-engine.com

marchetti-engine.com
marchetti-engine.com

Rotational acceleration of the wheels

Knowing acceleration of the wheels is useful, because acceleration can contribute to slip (and
therefore wear) due to wheel inertia. It can be reduced by tweaking parameters, typically at the
cost of cylinder stroke distance. Before deriving the solution, two examples are used to explain the
method used to calculate it. The first example is a wheel rotating inside a circular hole that is
slightly larger than the wheel. The second example is a wheel rotating around a point.

Contact point PRAEN
’ N v = wheel rotation
1
I |
'/
\\ RC // '/

ARG
V2 ~
el
/

1 ryl
\ /
\ /
~N 7

Actual wheel rotation -~_ -

Contact point

Figure 2: Example 1, wheel in a hole Figure 3: Example 2, wheel around a point

In example 1, the wheel rotation is equal to the distance travelled by the wheel (projected on
circumference), minus the circumferential distance travelled by the contact point. Since they are
almost equal, the wheel has not rotated much. In example two, the wheel moves around a point
and therefore travels no distance. The wheel angle then is equal to the contact point angle . For
a straight path where the contact point angle ~ is constant, wheel rotation is proportional to the
distance travelled.

In order to proceed and obtain both v and the distance travelled along the curve C', numerical
methods are applied. Firstly gamma is obtained:

/!

B
-1 1
v = tan (_ ‘Zy)

Where the arc tangent is defined in the algorithm such that it can output an angle starting at 0°
up to and excluding 360°. The positive direction is counter clockwise. The X and Y terms are
switched because the slope angle By is rotated 90° inwards, so X, = —Bj, and Y, = Bj,.

The following additional parameters are defined:

Parameter Description
da Differential angle
dw Differential distance on wheel
dC' Differential distance on cam contour
dS Differential distance of wheel
sW Wheel distance (sum total of dS)
vW Wheel velocity
aW Wheel acceleration
- Wheel revolutions (rad)
dC/ \

Wheel rotational velocity (
Contact point

d
rady)

Wheel rotational acceleration (

: DD

rad)

rad2

Figure 4: Parameters for wheel rotation
The angle « is discretised in N steps such that each angular step is defined as:

da = apy1 — an

Then the differential distances are as follows:

dw = Rc (V41 — V)
dC = \/(Cx,n-i-l - Cz,n)2 + (Cy,n—H - Cy,n)2

Made by Wesley Peijnenburg marchetti-engine.com 3

marchetti-engine.com

Example 1 in Figure 2, is used here to show that the contact point moves in opposite direction to
the actual wheel rotation. Therefore in order to obtain the actual wheel rotation defined here as a
circumferential distance, the two variables are added and not subtracted:

dS = dw + dC

Circumferential distance (proportional to wheel rotations) is defined as the integral over dS:

sW,, = Zn: dw,, + dC,

n=1

Then, the circumferential velocity and acceleration are obtained:

ds

'UWn = @
oW
W, = —
“ da

The acceleration aW, is plotted in Figure 5 below:

20000 A

15000 +

rad?

10000 +

aWh [

5000 A

0 45 90 135 180 225 270 315 360
a [deg]

Figure 5: Circumferential acceleration on the wheel

Finally the rotations, rotational velocity and acceleration are as follows:

sW,, . oW, . aW,
Gn = s Hn = s Hn =
R, R, R,

Here it can be assumed that the engine rotates at for example one %. Then the units of én, 0,

rad
s

rad and % respectively.

become e

Note of the author

As addendum to this article, I have included my Python code to make it easier for others to use
this work for their own projects or contribute.

On a personal note, I prefer an analytical solution to a numerical one but have not been able to
solve the line integral [C(z,y) dS where dS = \/dx? + dy? da. Help from a fine mathematician
is requested here to advance the search for an analytical solution to this problem (and/or correct
the current solution). He or she shall be duly credited and can always contact me at wpeijnen-
burg@gmail.com.

4 Made by Wesley Peijnenburg marchetti-engine.com

marchetti-engine.com

Appendix - Python code example

import sys

import numpy as np

from math import sqrt

from matplotlib import pyplot as plt

from matplotlib.animation import FuncAnimation as func_ ani

Shortened function notations:

def d2r(deg) : return np.deg2rad(deg)

def r2d(rad) : return np.rad2deg(rad)

def sin(rad) : return np.sin(rad)

def cos(rad) : return np.cos(rad)

def atan(x,y): # Redefined to span over 0—360 degrees
if y>=0 : return np.arctan2(y,x)
else : return np.arctan2(y,x) + 2*np.pi

User input:

Ra = 170 # mm, radial distance to point A, the rotating points
Rb = 85 +# Length of the arms
Rec = 47 +# Radius of wheels

beta_min = d2r(20) # Lowest swing angle of the arms
beta_max = d2r(100) # Highest swing angle of the arms
res 1000 # Resolution

lims 0.55xRa # Boundaries for plotting

Calculated input:

pi = np.pi

beta. D = beta max — beta min

alphas = np.linspace(0, 2#pi, res, endpoint=False) # Main axis orientation
stroke = 2 % Rb * sin(beta D / 2) # Stroke distance of the pistons

Obtaining the geometry

def Ax (a): return Ra * cos(a)

def Ay (a): return Ra = sin(a)

def betal (a): return beta_min + 0.5%beta_D * (1 — cos(2xa))
def beta2 (a): return beta min + 0.5%beta D % (1 + cos(2*a))

def Blx (a): return Ax(a) + Rb % cos(a + pi — betal(a))

def Bly (a): return Ay(a) + Rb * sin(a + pi — betal(a))

def B2x (a): return Ax(a) + Rb * cos(a + pi + beta2(a))

def B2y (a): return Ay(a) + Rb * sin(a + pi + beta2(a))

def dBlx (a): return —Rasxsin(a) — Rbsxsin(a + pi — betal(a))*(1 — beta_D = sin(2x*a))
def dBly (a): return Raxcos(a) + Rbxcos(a + pi — betal(a))*(1 — beta_D x sin(2xa))
def dB2x (a): return —Rasxsin(a) — Rbsxsin(a + pi + beta2(a))*(1 — beta_D = sin(2x*a))
def dB2y (a): return Raxcos(a) + Rb*cos(a + pi + beta2(a))*(1 — beta_D x sin(2xa))
def Clx (a): return Blx(a) — Rc * dBly(a) / sqrt(dBlx(a)+x2 + dBly(a)**2)

def Cly (a): return Bly(a) + Rc * dBlx(a) / sqrt(dBlx(a)*x2 + dBly(a)**2)

def C2x (a): return B2x(a) — Rc * dB2y(a) / sqrt(dB2x(a)*x2 + dB2y(a)**2)

def C2y (a): return B2y(a) + Rc x dB2x(a) / sqrt(dB2x(a)+x2 + dB2y(a)**2)

def gammal (a): return atan(—dBly(a), dBlx(a))

):
def wheellx(a, rot): return [Blx(a) + Rc * cos(t+rot) for t in alphas] # Includes rotation angle for plotting
def wheelly(a, rot): return [Bly(a) + Rc # sin(t+rot) for t in alphas] # Includes rotation angle for plotting
def wheel2x(a): return [B2x(a) + Rc * cos(t) for t in alphas]
def wheel2y(a): return [B2y(a) + Rc * sin(t) for t in alphas]

Evaluation of cam distance travelled, wheel orientation, velocity and acceleration

ao = 0 # Alpha old

Wdiff_prev. = Rc * (gammal(ao) — gammal(alphas[—1]—2x%pi)) # Diff. circumferential distance on wheel
Cdiff_prev = sqrt((Clx(ao)—Clx(alphas[—1]))**2 + (Cly(ao)—Cly(alphas[—1]))**2) # diff. on cam
Wrotdist_ prev= Cdiff prev + Wdiff prev # Diff. distance of wheel

Vw_old = Wrotdist_prev / (ao — alphas[—1] + 2xpi) # circumferential velocity of wheel
Lew = [0] # Wheel circumferential distance travelled

Vew = [Vw_old] # Wheel circumferential velocity

Acw = # Wheel circumferential acceleration

for i, an in enumerate(alphas[1:]):
da = an—ao # Delta alpha (step size)

Detect jump of 360 degrees to 0 and correct step size
if abs(gammal(an) — gammal(ao)) > pi:

Wdiff = Rc * (gammal(an) — gammal(ao) + 2xpi)
else:
Wdiff = Rc * (gammal(an) — gammal(ao))
Cdiff = sqrt((Clx(an)—Clx(ao))**2 + (Cly(an)—Cly(ao))**2)
Wrotdist_new = Cdiff + Wdiff # Circumferential distance of wheel
Vw__new = Wrotdist_new / da # Circumferential velocity between two points

Lcw.append(Lew[i] + Wrotdist_new) # Sum and store total for each alpha

Made by Wesley Peijnenburg marchetti-engine.com 5

marchetti-engine.com

Vew.append(Vw_new) # Sum and store velocity
Acw.append((Vw_new — Vw_old) / da) # Sum and store acceleration

#Update variables

ao = an

Vw__new = Vw_old
Wrotdist_ prev = Wrotdist_ new

W1 _orients = [L/Rc + gammal(0) for L in Lew] # Radians

Animation of the solution

fig = plt.figure();

ax = plt.axes(xlim=(—lims, lims), ylim=(—lims, lims)); ax.grid();ax.axis(’equal’)

plt. title ("Marchetti engine, by Wesley Peijnenburg’)
ax.setixlabel('X [mm]’, fontsize=15); ax.set_ylabel(’Y [mm]’, fontsize=15)

plotA, = ax.plot([], [J, 'ro’ , linewidth=2, markersize=7)

plotAs, = ax.plot([], [], ’k——’, linewidth=1, markersize=7)

plot0, = ax.plot([], [, 'k+’ , markeredgewidth=2, markersize=15)

plotBl, = ax.plot([], [], 'r—0’)

plotB2, = ax.plot([], [], ’b—0’)

plotBls, = ax.plot([], [], 'r——’, linewidth=0.5)

plotB2s, = ax.plot([], [], 'b——’, linewidth=0.5)

plotCls, = ax.plot([], [, 'r——")

plotC2s, = ax.plot([], [], 'b——")

plotW1l, = ax.plot([], [], 'k:’ , linewidth=2) # Wheels

plotW2, = ax.plot([], [], '’k—’ , linewidth=0.5) # Wheels

plotW1C, = ax.plot([], [J, 'm—’ , linewidth=0.5) # Contact points

plotW2C, = ax.plot([], [, 'm—’ , linewidth=0.5) # Contact points
[

plotROTC1,= ax.plot([], [], 'g—’ , linewidth=3) # Wheel actual rotations

def init(): # initialization function: plot the background of each frame
Static:
plot0 .set_data([0], [0])

plotAs .set_data([Ax (a) for a in alphas], [Ay (a) for a in alphas])
plotBls.set_data([Blx(a) for a in alphas], [Bly(a) for a in alphas])
plotB2s.set_data([B2x(a) for a in alphas], [B2y(a) for a in alphas])
plotCls.set_data([Clx(a) for a in alphas], [Cly(a) for a in alphas])
plotC2s.set_ data([C2x(a) for a in alphas], [C2y(a) for a in alphas])
Dynamic:
plotA set_data([], [])
plotB1 .set_data([], [])
plotB2 .set_data(]], [])
plotW1l .set_data([], [])
plotW2 .set_data({[], [])
plotW1C .set_data([], [])
plotW2C .set_data([], [])

[

plotROTC1.set_data([], [])

return plotA,

def animate(i): # animation function, called sequentially
a = d2r(i/res * 360)
plotA .set data(Ax(a), Ay(a))
plotB1 .set_data([Ax(a), Blx(a)], [Ay(a), Bly(a)])
plotB2 .set_data([Ax(a), B2x(a)], [Ay(a), B2y(a)])
plotW1 .set data(wheellx(a, W1_ orients[i]), wheelly(a, W1_ orients[i]))
plotW2 .set_ data(wheel2x(a), wheel2y(a))
plotROTCl1.set_data([Blx(a), Blx(a)+cos(W1_orients[i])*Rc],\

[Bly(a), Bly(a)+sin(W1_ orients[i])*Rc])

plotW1C.set_ data([Blx(a), Clx(a)], [Bly(a), Cly(a)])
plotW2C.set_ data([B2x(a), C2x(a)], [B2y(a), C2y(a)])

return plotA, plotB1, plotB2, plotW1, plotW2, plotW1C, plotW2C, plotROTC1

anim = func_ani(fig, animate, init_func=init, frames=res, interval=15, blit=True)
plt.show()

6 Made by Wesley Peijnenburg marchetti-engine.com

marchetti-engine.com

